1·The proofs rely on bifurcation theory.
该证明依靠分岔理论。
2·Bifurcation theory is a useful mathematic method in studying nonlinear system.
分歧理论是研究非线性系统的一种有效的数学工具。
3·With the aid of bifurcation theory, the theoretical bifurcation condition is derived.
给出了分叉发生的临界条件。
4·Methods Using the theorem of center manifold and bifurcation theory of planar system.
方法利用中心流形定理并结合平面系统的分支理论。
5·Firstly, the application of bifurcation theory to the analysis of voltage stability is introduced.
首先介绍了分岔理论在电压稳定性分析中的应用。
6·Further, the existence of a nontrivial periodic solution is considered by using bifurcation theory.
利用分支理论分析了非平凡周期解的存在性。
7·The problem of applying bifurcation theory in influence of reactive power compensation upon voltage stability etc.
分析研究了分叉理论应用于无功补偿对电压稳定性影响等问题。
8·In this paper, spherically symmetric structures of the Brusselator are calculated in detail by using the bifurcation theory.
本文利用分支点理论详细地计算了布鲁塞尔子的球对称解。
9·Finally, the correctness and rationalization of the unified discontinuous bifurcation theory is verified by the results of experiment.
通过与实验结果比较,验证了统一非连续分叉理论的合理性和正确性。
10·The rotor bearing system was investigated using the stability and bifurcation theory for nonlinear dynamic system and the database method.
应用精度高、速度快的非线性油膜力数据库方法及非线性动力系统的稳定性和分叉理论对转子-轴承系统进行了分析。